Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Acta Neuropathol ; 147(1): 39, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347288

ABSTRACT

Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid ß (Aß), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aß, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aß, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aß, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aß, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Stroke , Humans , alpha-Synuclein/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/pathology , Brain/pathology , Endothelial Cells/pathology , Neurodegenerative Diseases/pathology , Stroke/pathology , tau Proteins/metabolism
2.
Child Adolesc Psychiatry Ment Health ; 17(1): 78, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365640

ABSTRACT

BACKGROUND: It is well known that the COVID-19 pandemic has caused a global health crisis, especially for young people. However, most studies were conducted during the first waves of the pandemic. Few Italian studies specifically attempted to broadly assess young people's mental health status during the fourth wave of the pandemic. METHODS: This study aimed at evaluating the mental health status among a group of Italian adolescents and young adults during the fourth wave of the COVID-19 pandemic. 11,839 high school students and 15,000 university students (age range 14-25) were asked to complete a multidimensional online survey, of which 7,146 (26,6%) agreed to participate. The survey also included standardized measures for depression, anxiety, anger, somatic symptoms, resilience, loneliness and post-traumatic growth. Two separate clusters were identified through cluster analysis. Random forest, classification tree and logistic regressions analyses were applied to identify factors associated to a good or a poor level of mental health and, thus, to define students' mental health profiles. RESULTS: Overall, the students in our sample showed high levels of psychopathology. The clustering methods performed identified two separate clusters reflecting groups of students with different psychological features, that we further defined as "poor mental health" and "good mental health". The random forest and the logistic regressions found that the most discriminating variables among those two groups were: UCLA Loneliness Scale score, self-harm behaviors, Connor-Davidson Resilience Scale-10 score, satisfaction with family relationships, Fear of COVID-19 Scale score, gender and binge eating behaviors. The classification tree analysis identified students' profiles, showing that, globally, poor mental health was defined by higher scores of loneliness and self-harm, followed by being of female gender, presenting binge eating behaviors and, finally, having unsatisfying family relationships. CONCLUSIONS: The results of this study confirmed the major psychological distress caused by the COVID-19 pandemic in a large sample of Italian students, and provided further insights regarding those factors associated with a good or poor mental health status. Our findings suggest the importance of implementing programs targeting aspects that have been found to be associated to a good mental health.

3.
Neurobiol Dis ; 180: 106067, 2023 05.
Article in English | MEDLINE | ID: mdl-36893901

ABSTRACT

Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.


Subject(s)
MPTP Poisoning , Parkinson Disease , Humans , Mice , Animals , NF-kappa B/metabolism , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-rel/metabolism , Leukocytes, Mononuclear/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology
4.
Cells ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36497160

ABSTRACT

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.


Subject(s)
Dopaminergic Neurons , Synapsins , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor/genetics , Dopamine , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Methylphenidate/therapeutic use , Mice, Knockout , Synapsins/genetics , Synapsins/metabolism , Zebrafish/metabolism
5.
Front Pharmacol ; 13: 1017364, 2022.
Article in English | MEDLINE | ID: mdl-36339574

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.

6.
Cell Signal ; 97: 110372, 2022 09.
Article in English | MEDLINE | ID: mdl-35640822

ABSTRACT

Chronic hyperglycemia favours the formation of advanced glycation end products (AGEs) which are responsible of many diabetic vascular complications. Keeping in view the medicinal properties of the1,2,3-triazole-conjugated analogs, the present study was designed to evaluate the possible effect of carbazole-linked 1,2,3-triazoles 2-16 against glucose- and methylglyoxal-AGEs-induced inflammation in human THP-1 monocytes. In vitro antiglycation, and metabolic assays were used to determine antiglycation, and cytotoxicity activities. DCFH-DA, immunostaining, immunoblotting, and ELISA techniques were employed to study the ROS and levels of proinflammatory mediators in THP-1 monocytes. Among all the synthesized carbazole-linked 1,2,3 triazoles, compounds 2, 7, 8, and 11-16 showed antiglycation activity in glucose- and MGO-modified bovine serum albumin models, whereas parent compound 1 only exhibited activity in glucose-BSA model. The metabolic assay demonstrated the non-toxic profile of compounds 1-2, 11-13, and 15 up to 100 µM concentration in both HepG2 and THP-1 cell lines. We found that compounds 11-13, and 15 attenuated AGEs-induced ROS formation (P < 0.001), and halted NF-ĸB translocation (P < 0.001), likewise standard drugs, PDTC, rutin, and quercetin, in THP-1 monocytes. Among the derivatives, compounds 12, and 13 also suppressed the AGEs-induced elevation of COX-2 (P < 0.001) and PGE2 (P < 0.001). Our data show that the carbazole-linked triazoles 12, and 13 hampering the formation of glycation products, prevent the activation of AGEs-ROS-NF-κB signaling pathway, and limit the proinflammatory COX-2 protein, and PGE2 induction in human THP-1 monocytes. Both these compounds can thus serve as leads for further studies towards the treatment and prevention of diabetic vascular complications.


Subject(s)
Diabetic Angiopathies , Pyruvaldehyde , Carbazoles/metabolism , Carbazoles/pharmacology , Cyclooxygenase 2/metabolism , Diabetic Angiopathies/metabolism , Dinoprostone/metabolism , Glucose/metabolism , Glycation End Products, Advanced , Humans , Monocytes/metabolism , NF-kappa B/metabolism , Pyruvaldehyde/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , Triazoles/pharmacology
7.
Front Behav Neurosci ; 16: 831664, 2022.
Article in English | MEDLINE | ID: mdl-35368305

ABSTRACT

Non-motor symptoms are frequently observed in Parkinson's disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel-/- mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months. To assess whether c-rel-/- mice also suffer from neuropsychiatric symptoms, in this study we tested different cohorts of wild-type (wt) and c-rel-/- mice at 3, 6, 12, and 18-20 months with different behavioral tests. Mice lacking c-Rel displayed anxiety and depressive-like behavior starting in the premotor phase at 12 months, as indicated by the analysis with the open field (OF) test and the forced swim test with water wheel (FST), respectively. A deficit in the goal-oriented nesting building test was detected at 18-20 months, suggesting apathetic behavior. Taken together, these results indicate that c-rel-/- mice recapitulate the onset and the progression of PD-related neuropsychiatric symptoms. Therefore, this animal model may represent a valuable tool to study the prodromal stage of PD and for testing new therapeutic strategies to alleviate neuropsychiatric symptoms.

8.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162978

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There is no cure and current treatments fail to slow the progression of the disease. Epigenetic modulation in the acetylation state of NF-kB RelA and the histone 3 (H3) protein, involved in the development of neurodegeneration, is a drugable target for the class-I histone deacetylases (HDAC) inhibitors, entinostat or valproate, and the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator, resveratrol. In this study, we demonstrated that the combination of valproate and resveratrol can restore the normal acetylation state of RelA in the SOD1(G93A) murine model of ALS, in order to obtain the neuroprotective form of NF-kB. We also investigated the sexually dimorphic development of the disease, as well as the sex-sensibility to the treatment administered. We showed that the combined drugs, which rescued AMPK activation, RelA and the histone 3 acetylation state, reduced the motor deficit and the disease pathology associated with motor neuron loss and microglial reactivity, Brain-Derived Neurotrophic Factor (BDNF) and B-cell lymphoma-extra large (Bcl-xL) level decline. Specifically, vehicle-administered males showed earlier onset and slower progression of the disease when compared to females. The treatment, administered at 50 days of life, postponed the time of onset in the male by 22 days, but not in a significant way in females. Nevertheless, in females, the drugs significantly reduced symptom severity of the later phase of the disease and prolonged the mice's survival. Only minor beneficial effects were produced in the latter stage in males. Overall, this study shows a beneficial and sexually dimorphic response to valproate and resveratrol treatment in ALS mice.


Subject(s)
Amyotrophic Lateral Sclerosis , AMP-Activated Protein Kinases/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Female , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Male , Mice , Mice, Transgenic , NF-kappa B/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Sirtuin 1/metabolism , Superoxide Dismutase/metabolism , Valproic Acid/pharmacology , Valproic Acid/therapeutic use
9.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35038583

ABSTRACT

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Dopamine , Dopaminergic Neurons/metabolism , Gene Silencing , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/therapy , Phenotype , Substantia Nigra/metabolism , Synapsins/genetics , Synapsins/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
10.
Neurosci Biobehav Rev ; 130: 33-60, 2021 11.
Article in English | MEDLINE | ID: mdl-34407457

ABSTRACT

Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.


Subject(s)
Mental Disorders , Synapsins , Humans , Neurons , Synaptic Transmission , Synaptic Vesicles
11.
Parkinsonism Relat Disord ; 87: 41-47, 2021 06.
Article in English | MEDLINE | ID: mdl-33964785

ABSTRACT

INTRODUCTION: neurofilament light chain (NfL) levels have been proposed as reliable biomarkers of neurodegeneration in Parkinson's disease (PD) but the relationship between plasma NfL, clinical subtypes of PD and motor progression is still debated. METHODS: plasma NfL concentration was measured in 45 healthy controls and consecutive 92 PD patients who underwent an extensive motor and non-motor assessment at baseline and after 2 years of follow-up. PD malignant phenotype was defined as the combination of at least two out of cognitive impairment, orthostatic hypotension and REM sleep behavior disorder. PD patients were divided according to the age-adjusted cut-offs of plasma NfL levels into high and normal NfL (H-NfL and N-NfL, respectively). A multivariable linear regression model was used to assess the value of plasma NfL as predictor of 2-years progression in PD. RESULTS: NfL was higher in PD patients than in controls (p = 0.037). H-NfL (n = 16) group exhibited more severe motor and non-motor symptoms, higher prevalence of malignant phenotype and worse motor progression (MDS-UPDRS-III 11.3 vs 0.7 points, p = 0.003) compared to N-NfL group (n = 76). In linear regression analyses plasma NfL emerged as the best predictor of 2-year motor progression compared to age, sex, disease duration, baseline motor/non-motor variables. CONCLUSION: increased plasma NfL concentration is associated with malignant PD phenotype and faster motor progression. These findings support the role of NfL assessment as a useful measure for stratifying patients with different baseline slopes of decline in future clinical trials of putative disease-modifying treatments.


Subject(s)
Disease Progression , Neurofilament Proteins/blood , Parkinson Disease/blood , Parkinson Disease/classification , Parkinson Disease/physiopathology , Aged , Aged, 80 and over , Cognitive Dysfunction/etiology , Female , Follow-Up Studies , Humans , Hypotension, Orthostatic/etiology , Male , Middle Aged , Parkinson Disease/complications , Phenotype , REM Sleep Behavior Disorder/etiology
12.
Front Immunol ; 12: 611761, 2021.
Article in English | MEDLINE | ID: mdl-33679750

ABSTRACT

Misfolded proteins, inflammation, and vascular alterations are common pathological hallmarks of neurodegenerative diseases. Alpha-synuclein is a small synaptic protein that was identified as a major component of Lewy bodies and Lewy neurites in the brain of patients affected by Parkinson's disease (PD), Lewy body dementia (LBD), and other synucleinopathies. It is mainly involved in the regulation of synaptic vesicle trafficking but can also control mitochondrial/endoplasmic reticulum (ER) homeostasis, lysosome/phagosome function, and cytoskeleton organization. Recent evidence supports that the pathological forms of α-synuclein can also reduce the release of vasoactive and inflammatory mediators from endothelial cells (ECs) and modulates the expression of tight junction (TJ) proteins important for maintaining the blood-brain barrier (BBB). This hints that α-synuclein deposition can affect BBB integrity. Border associated macrophages (BAMs) are brain resident macrophages found in association with the vasculature (PVMs), meninges (MAMs), and choroid plexus (CPMs). Recent findings indicate that these cells play distinct roles in stroke and neurodegenerative disorders. Although many studies have addressed how α-synuclein may modulate microglia, its effect on BAMs has been scarcely investigated. This review aims at summarizing the main findings supporting how α-synuclein can affect ECs and/or BAMs function as well as their interplay and effect on other cells in the brain perivascular environment in physiological and pathological conditions. Gaps of knowledge and new perspectives on how this protein can contribute to neurodegeneration by inducing BBB homeostatic changes in different neurological conditions are highlighted.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelial Cells/metabolism , alpha-Synuclein/metabolism , Animals , Biomarkers , Brain/pathology , Cell Communication , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Susceptibility , Gene Expression Regulation , Humans , Microglia/immunology , Microglia/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , alpha-Synuclein/genetics
13.
Int J Mol Med ; 47(2): 533-546, 2021 02.
Article in English | MEDLINE | ID: mdl-33416118

ABSTRACT

Parkinson's disease (PD) is an important disabling age­related disorder and is the second most common neurodegenerative disease. Currently, no established molecular biomarkers exist for the early diagnosis of PD. Circulating microRNAs (miRNAs), either vesicle­free or encapsulated in extracellular vesicles (EVs), have emerged as potential blood­based biomarkers also for neurodegenerative diseases. In this exploratory study, we focused on miR­34a­5p because of its well­documented involvement in neurobiology. To explore a differential profile of circulating miR­34a­5p in PD, PD patients and age­matched control subjects were enrolled. Serial ultracentrifugation steps and density gradient were used to separate EV subpopulations from plasma according to their different sedimentation properties (Large, Medium, Small EVs). Characterization of EV types was performed using western blotting and atomic force microscopy (AFM); purity from protein contaminants was checked with the colorimetric nanoplasmonic assay. Circulating miR­34a­5p levels were evaluated using qPCR in plasma and in each EV type. miR­34a­5p was significantly up­regulated in small EVs devoid of exogenous protein contaminants (pure SEVs) from PD patients and ROC analysis indicated a good diagnostic performance in discriminating patients from controls (AUC=0.74, P<0.05). Moreover, miR­34a­5p levels in pure SEVs were associated with disease duration, Hoehn and Yahr and Beck Depression Inventory scores. These results underline the necessity to examine the miRNA content of each EV subpopulation to identify miRNA candidates with potential diagnostic value and lay the basis for future studies to validate the overexpression of circulating miR­34a­5p in PD via the use of pure SEVs.


Subject(s)
Circulating MicroRNA/blood , Extracellular Vesicles/metabolism , Gene Expression Regulation , MicroRNAs/blood , Parkinson Disease/blood , Aged , Aged, 80 and over , Female , Humans , Male
14.
Neurodegener Dis ; 21(5-6): 109-116, 2021.
Article in English | MEDLINE | ID: mdl-35287127

ABSTRACT

INTRODUCTION: Previous studies reported increased plasma levels of cystatin C (Cys-C) in Parkinson's disease (PD) and claimed for a possible association with disease severity and progression. The aim of this study was to evaluate plasma Cys-C in PD and healthy controls (HC) and test its association with markers of peripheral inflammation, neurodegeneration, and clinical progression in a longitudinal study. METHODS: Plasma Cys-C, high-sensitive C-reactive protein, interleukin 6, and neurofilament light chain (NfL) were assessed at the baseline in 71 consecutive non-demented PD and 69 HC. PD patients underwent an extensive motor and cognitive assessment at baseline and after 2 years of follow-up. The association of Cys-C with disease severity was evaluated in a multilinear model adjusted for the effect of age, sex, disease duration, and peripheral inflammation. RESULTS: Cys-C levels appeared to be higher in PD compared to controls and correlated with the plasma neuronal marker NfL (r = 0.204, p = 0.046). In longitudinal analyses, PD patients with higher Cys-C levels exhibited faster motor progression at 2 years of follow-up independently from the peripheral inflammatory profile. CONCLUSIONS: Cys-C was associated with higher NfL levels and a remarkably faster motor progression in PD independently from peripheral inflammation. Further studies are needed in order to understand the mechanisms underpinning the association of Cys-C with higher neuronal damage markers in neurodegenerative diseases.

15.
J Neuroinflammation ; 17(1): 361, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33246465

ABSTRACT

BACKGROUND: Activation of NF-kappaB RelA deacetylated at the lysine residues, except the lysine 310, drives pro-apoptotic transcription in noxious brain ischemia. We showed that the sinergistic combination of the histone deacetilase inhibitor MS-275 with the sirtuin 1 activator resveratrol, at very low doses, restores normal RelA acetylation and elicit neuroprotection in mice subjected to transient middle cerebral artery occlusion (tMCAO) and primary cortical neurons exposed to oxygen-glucose-deprivation (OGD). The present study aims at corroborating the neuroprotective potential of the epigenetic treatment in a model of permanent brain ischemia and investigate its effect on post-ischemic inflammation and microglia activation. METHODS: Male mice subjected to permanent occlusion of the distal MCAO (pMCAO) were treated with vehicle or MS-275 (20 µg/kg) and resveratrol (680 µg/kg) i.p. immediately after the ischemia. Microglia-containing mixed glial cultures were prepared from the brain of 1-3-day-old mice. Primary cortical neurons were prepared from 15-day-old embryonic mice. RESULTS: MS-275 and resveratrol in combination, but not individually, reduced infarct volume and neurological deficits evaluated 48 h after the pMCAO. At 24 h, the treatment inhibited the RelA binding to Nos2 promoter, reduced the elevated expression of Nos2, Il6, Il1b, Mrc1 and Ym1 and the leukocytes infiltration in the ischemic area. The effect was nonpermanent. The treatment did not limit the sustained leukocyte infiltration or Nos2 and Il1b transcription observed at 7 days. Though, it induced alternative activation markers of microglia/macrophages, Arg1, Ym1 and Fcgr2b that could be added to Mrc1, Tgfb1 and Trem2 spontaneously increased at 7 days after ischemia. At 24 hours the drug treatment quenched the microglia/macrophages activation in the ischemic cortical sections, as shown by the recovered ramified morphology and lowered iNOS or CD68 immunoreactivity in Iba1-positive cells. Both microglia and astrocytes in mixed glial cultures, but not pure astrocytes, displayed signs of activation and iNOS-immunoreactivity when treated with a conditioned medium (NCM) from OGD-exposed cortical neurons. The epigenetic drugs limited the OGD-NCM-mediated activation. CONCLUSIONS: Our findings indicate that single treatment with MS-275 and resveratrol can reduce stroke-mediated brain injury and inflammation observed 2 days after the pMCAO and put the rational to test repeated administration of the drugs. The anti-inflammatory property of MS-275 and resveratrol combination can be ascribed to both primary direct inhibition of microglia/macrophage activation and secondary glial/macrophages inhibition mediated by neuroprotection.


Subject(s)
Infarction, Middle Cerebral Artery/pathology , Macrophage Activation/drug effects , Microglia/drug effects , Neuroprotective Agents/pharmacology , Animals , Antioxidants/pharmacology , Benzamides/pharmacology , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Infarction, Middle Cerebral Artery/immunology , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/immunology , Pyridines/pharmacology , Resveratrol/pharmacology
16.
ACS Chem Neurosci ; 11(15): 2327-2339, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32603086

ABSTRACT

The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.


Subject(s)
Myelin Sheath , Schwann Cells , Neuromuscular Junction , Neurons , Peripheral Nerves
17.
Front Aging Neurosci ; 12: 68, 2020.
Article in English | MEDLINE | ID: mdl-32265684

ABSTRACT

The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.

18.
Demetra (Rio J.) ; 15(1): 47995, jan.- mar.2020. ilus, tab
Article in English, Portuguese | LILACS | ID: biblio-1363695

ABSTRACT

Objetivo: Foram avaliadas as dificuldades no processo de compra /venda de produtos orgânicos da agricultura familiar para a alimentação escolar em 21 municípios do Sul do Brasil e identificadas as ações para superá-las. Métodos: Estudo quali-quantitativo realizado mediante entrevistas semiestruturadas com 111 informantes-chave envolvidos na alimentação escolar. Os entrevistados foram arguidos sobre as dificuldades da compra / venda de alimentos orgânicos para a alimentação escolar e sobre as ações que estão sendo desenvolvidas e/ou em planejamento para superação dessas problemáticas. Realizou-se análise descritiva das perguntas fechadas com base na distribuição da frequência e análise de conteúdo com codificação e categorização das questões abertas. Resultados: A maioria dos municípios (n=19) não comprava alimentos orgânicos provenientes da agricultura familiar. A pouca disponibilidade de mercado fornecedor e a baixa produção de alimentos orgânicos foram as dificuldades mais relatadas. Em contrapartida, os custos elevados dos produtos e a ausência de interesse da gestão pública na aquisição de alimentos orgânicos foram dificuldades pouco citadas. Os entrevistados apontaram que a compra/venda poderia aumentar com o fortalecimento dos processos de certificação participativa e se os envolvidos tivessem maiores informações sobre os benefícios e riscos dos modelos produtivos. Conclusões: Evidenciaram-se o fortalecimento da assistência técnica e extensão rural, desenvolvimento das regulamentações e incentivos para a certificação orgânica, apoio e investimento para a certificação participativa e orientações técnicas são estratégias necessárias para o incentivo da produção e consumo de alimentos orgânicos na alimentação humana. (AU)


Objective: To evaluate the difficulties in the process of buying/selling organic products from family farming for school meals in 21 municipalities in southern Brazil and to take actions to overcome them. Methods: This is a qualitative and quantitative study through semi-structured interviews with 111 key informants involved in school meals. The interviewees were asked about the difficulties of buying/selling organic food for school meals and about the actions developed and/or in planning to overcome these problems. Descriptive analysis of closed questions was performed based on frequency distribution and content analysis with coding and categorization of open questions. Results: Most municipalities (n = 19) did not buy organic food from family farming. The limited availability of the supplier market and the low production of organic foods were the most reported difficulties. On the other hand, the high costs of the products and the lack of interest by the public management in the acquisition of organic foods were difficulties little mentioned. Respondents highlighted that buying/selling could increase with the strengthening of participatory certification processes and if those involved had more information about the benefits and risks of productive models. Conclusions: The strengthening of technical assistance and rural extension, development of regulations and incentives for organic certification, support and investment for participatory certification, and technical guidelines were necessary strategies to encourage the production and consumption of organic human food. (AU)


Subject(s)
Humans , Public Policy , School Feeding , Products Commerce , Organic Agriculture/economics , Food, Organic/economics , Brazil , Food Supply
19.
Neurobiol Dis ; 138: 104789, 2020 05.
Article in English | MEDLINE | ID: mdl-32032728

ABSTRACT

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Subject(s)
Methylphenidate/metabolism , Synapsins/metabolism , alpha-Synuclein/metabolism , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Gait Disorders, Neurologic/metabolism , Lewy Bodies/metabolism , Methylphenidate/pharmacology , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Synucleinopathies
20.
Nutrients ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383852

ABSTRACT

Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.


Subject(s)
Polyphenols/pharmacology , Stroke/drug therapy , Stroke/prevention & control , Animals , Brain Ischemia , Cerebral Hemorrhage , Diarylheptanoids , Ellagic Acid , Flavonoids/pharmacology , Gastrointestinal Microbiome , Humans , Hydrolyzable Tannins , Hydroxybenzoates , Lignans , Polyphenols/classification , Stilbenes , Subarachnoid Hemorrhage
SELECTION OF CITATIONS
SEARCH DETAIL
...